Meeting Banner
Abstract #2250

Wavelet-Based Clustering and Dynamic Analysis of Resting State Data in the Rat

Shella Keilholz1, Alessio Medda2, Lukas Hoffmann3, Matthew E. Magnuson1, Garth Thompson1, Wen-Ju Pan1

1Biomedical Engineering, Emory/Georgia Tech, Atlanta, GA, United States; 2Georgia Tech Research Institute, Atlanta, GA, United States; 3Neuroscience Program, Emory University, Atlanta, GA, United States

While functional connectivity has typically been calculated over the length of an entire scan, interest has been growing in dynamic analysis methods that can detect changes in connectivity on much shorter time scales. Dynamic connectivity can be examined using sliding window correlation, but the properties of the dynamics depend on the window length, making a data-driven approach more attractive. We have developed an algorithm based on wavelet decomposition that clusters voxels into groups with similar temporal and spectral properties. The resulting clusters agree well with anatomy in the rat and the wavelet decomposition features exhibit sensitivity to network dynamics.

Keywords

activity agreement anesthetized another approximation attractive awake bilateral biomedical bottom brain broad candidate characterize chosen cluster clustering clusters coefficient coefficients coil combination connect connectivity consistent correlation correspond cortical course cross decomposition dependent detail detect developed deviation discrete distinctive distinguishable driven dynamic dynamics engineering entire examined exhibit exhibits expect falloff finding fingerprint frequencies frequency function functional glover gradual greater greatest growing hemispheres hierarchical histograms homologous humans identifies institute largely length linkage localized macaques making manner matched matrix measured much near networks opposite outside pair pairs patterns peak plateau power previous previously primary produced program promising properties prove randomly rather rats real recorded relationship repetitions reproducible researchers resting rodent scales scanner secondary seed sensitive separately share shorter sliding spectral spectrum steep strong supported surface table target tech temporal tended typically utilized variations varying volume ward wavelet window