Meeting Banner
Abstract #2232

Temporal Processing of fMRI Data Induces Functional Correlations and Potentially Alters Functional Activations

M. Muge Karaman1, Andrew S. Nencka2, Daniel B. Rowe1, 2

1Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI, United States; 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States

Temporal processing is a common practice in fMRI and functional connectivity MRI studies as a way to improve the resulting images. However, such processing alters the signal and noise properties of the data and could have severe effect on the statistical maps, including functional activations, computed from the processed images. We develop a mathematical framework that allows one to analytically analyze the effects of time series preprocessing, and thus contributes to produce more accurate functional activations. This exact method considers linear operators to perform spatial processing, reconstruction and Fourier anomalies correction, and temporal processing on the acquired signal measurements.

Keywords

accurate acquisition activation activations agar allows alter alterations alters although analytical anomalies arise assumed band biophysics block blocks censoring college common compute computed computer connectivity considered considering contributes correct corrected correcting correction correlation correlations covariance cumulative decay derived determined diagonal dimension dimensional dynamic evaluate exact expanding extended extracting field filtering framework functional fundamentally generated gradient identity imaginary implemented improved include included incorporated individual induce induces inside intra knowledge known leads linear longitudinal matching mathematical mathematically mathematics matrix medical model modeled models motion neighbors noise observation operators optimal outside pairs parts pass permuting phantom pipeline pixel pixels planar potentially practice preprocessing previous process processed processes processing produce product properties prospectively pulse real reconstructed reconstruction registration reordering repetitions representing researchers rotation sample science selected series signifies simulated since slice smoothing space spatial spherical stack statistical statistics steps subject temporal theory timing tissue understanding utilized vector vectors whereas yields