Meeting Banner
Abstract #2140

A Comparison of Two Automated and Probabilistic Tract Segmentation Methods

Jonathan D. Clayden1, Susana Munoz Maniega2, Mark E. Bastin3, Christopher A. Clark1

1Institute of Child Health, University College London, London, United Kingdom; 2Division of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom; 3Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom

In this work, we compare two freely available, probabilistic and automated methods for segmenting white matter tracts from diffusion MRI data.

Keywords

advantages ages although anisotropy applied approaches audience automate automated available avoid beginning bottom brain broader broadly child clear clinical coefficient cohort college comp comparing complex consistently consuming count coverage currently derived deviation diffusion dimensional dimensions division eight error establish extent five flash fluid forceps fractional freely front generally gold gradient grand guide health healthy hours immediately inferior influence institute intended intervention investigated isotropic kingdom larger latter leading longitudinal major make male manual maps mark minor model narrower near negligible note notes obvious overlaid overlaying package part partial pass performance pipeline pipelines potentially preprocessing prior probabilistic process processing produce prone pruning quickly random reconstructed required requirement requiring researchers resolution running scanner sciences segmentation segmentations segmented separate sets shapes sided since slightly space statistics structural structured studied subject subjects substantially summary table tend tends thresholded thresholding tools tract tractor tracts training transforming trend unsurprising variable variance variation volume volumes volunteer volunteers white