Meeting Banner
Abstract #2134

Group-Representative Partitions of Human Brain Structural Networks

Alessandra Griffa1, 2, Richard Betzel3, Kim Q. Do4, Philippe Conus5, Patric Hagmann, 16, Jean-Philippe Thiran1, 6

1Signal Processing Laboratory (LTS5), Ecole Polytechnique Fdrale de Lausanne (EPFL), Lausanne, Vaud, Switzerland; 2Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Vaud, Switzerland; 3Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; 4Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Vaud, Switzerland; 5Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Vaud, Switzerland; 6Department of Radiology, Univerity Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Vaud, Switzerland

Diffusion MRI, tractography and graph analysis allowed to characterize the brain structural architecture as a small-world, hierarchically modular network. The study of the brain modular topology is raising new interest, and could be a key approach for the understanding of neurodevelopmental disorder. In this framework, it is important to individuate representative partitions for whole groups of subjects. In this work we use information theory-derived measures to quantify the inter-subjects variability of structural network modular decomposition, and we propose different approaches (and particularly the consensus clustering algorithm) to individuate a group-representative partition.

Keywords

according acquisition agreement already anatomical applied approaches architecture assume become better brain building cent central characterization characterize characterized clustering coil communities composed comprising computed conceptually connectivity consensus considering consistency cortical crucial decomposability decomposed decomposition decompositions density derived described deserve determine determined determines development diffusion distance effectively evaluated evolution example fair fingerprint good graph health healthy highest highly hospital human hypothesize identified identify in vivo indicated individual instruments inter interconnected investigation iterations keys knowledge known laboratory literature mapping matrix meaningful measures modular modularity modules moreover morphological mutual necessary network networks node nodes normalized ones optimal organizational organized pair part particularly partition partitions powerful processing property psychiatric psychiatry psychological quantify radiology raising relatively representative representativeness represents resolution respect runs scale sciences segmentation selecting sets significantly similarity similarly simply site sites smoothing sparsely spatially spectrum stat streamline structural structure subject subjects suggest terms theory thought threshold toolbox toolkit topology underwent variability visually whole world years yielded