Meeting Banner
Abstract #2132

Whole-Brain Neighbourhood Tractography

Kiran K. Seunarine1, Jonathan D. Clayden2, Christopher A. Clark2

1Imaging and Biophysics Unit, UCL Institute of Child Health, London, United Kingdom; 2Imaging and Biophysics Unit, University College London, London, United Kingdom

Tractography allows the probing of brain connectivity. Limitations of the standard approaches are that they can be time consuming, require good anatomical knowledge and can be prone to false-positives. Neighbourhood tractography (NT) overcomes these limitations by using a priori information about the expected path of the tract through the brain. This work introduces a whole-brain extension to the NT algorithm to overcome some of the limitations of the method. We demonstrate the approach by segmenting four white-matter tracts. The segmentations show clear differences over single-seed NT, including fewer false-positives and a greater extent to the segmentation.

Keywords

additional allows although anatomical anatomically anchor approximately attempts automate automated belonging benefits best biophysics black bottom brain candidate capture captured child chosen clarity combining completely connect connectivity consisted consuming contain corpus cortex coverage dataset datasets define defined density derived describe described determines diffusion dispersion displacement disregard eleven enables examples exploit extend extends extent false female filtering finally full funded future generally generated gives good gradient grant guaranteed health healthy highly implementing improve in vivo include incorporate indicate inferior input institute kingdom knowledge known limitations location longitudinal major manually many match matched matches median medians minutes model models must narrow onto original overcome overlaid paths portable positives problem problematic procedure process reconstructed remaining removed reproducible required requires resolution scanner searches seed seeded segmentation segmentations segmented segmenting selection since space step streamline streamlines structures studies subject subjects subsequent subset tend tract tracts trained training typically unfeasible unit unsupervised updated user various volunteers white whole years