Meeting Banner
Abstract #2122

RubiX: Combining Spatial Resolutions for Bayesian Inference of Crossing Fibres in Diffusion MRI

Stamatios N. Sotiropoulos1, Saad Jbabdi1, Jesper L. Andersson1, Mark W. Woolrich1, 2, Kamil Ugurbil3, Timothy E.J. Behrens1

1FMRIB Centre, University of Oxford, Oxford, United Kingdom; 2Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, United Kingdom; 3Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

The trade-off between signal to noise ratio and spatial specificity governs the choice of spatial resolution in diffusion-weighted magnetic resonance imaging. We present an approach for tackling this trade-off by combining data acquired both at high and low spatial resolution. We combine all data into a single Bayesian model to estimate the underlying fibre patterns, therefore, combining the benefits of each acquisition. We show that fibre crossings at the highest spatial resolution can be inferred more robustly using this model compared to a simpler model that operates only on high-resolution data, when both approaches are matched for acquisition time.

Keywords

according accuracy acquisition activity agree allows analyses another applied approaches assist assume assuming assumption audience ball benefits brain broader capsule category chain choice chosen coherent collecting combine combined combines combining concentration conditional conjunction constraints crossing crossings dataset datasets density details diffusion diffusivity distribution employed error estimation example fails field fraction fractions framework full funding furthermore fusion future generate generated generative governs graphical grid grids ground highest human hyper identifiability identified illustrate illustrates immediate imposed imposes improvements in vivo indirectly infer inference inferred instance introduce isotropic kingdom limitations local match matched mechanism miller model models noise noisier noisy noted novel object operates orientation orientations oxford partial patterns posterior predicted predictions principles prior priors project propagate proton rather reduces registered relate relates relatively resolution resolutions respectively revealed robustly scaled scanned section simple simpler simulated smith spatial specificity spending stick subset system target theorem tissue trade truth uncertainty underlying unified unify unknown valid variance volume white