Meeting Banner
Abstract #2087

Variability Analyses of Track Density Imaging

Javier Urriola Yaksic1, Nyoman Dana Kurniawan1, Zhengyi Yang2, David C. Reutens1

1Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; 2Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia

Track density imaging (TDI) mapping method has been developed to dramatically increase the spatial resolution of diffusion-weighted imaging (DWI) data beyond the acquired resolution. However, it is not clear if TDI maps can be used to reliably to quantify differences in brain populations. This project aims to characterise short track TDI (stTDI) in terms of stability and reproducibility as a quantitative tool for group comparison of brain structures.

Keywords

absolute abstract acceleration accuracy achieved acquisition acquisitions adult advanced analyses angular appeared atlases averaging background besides beyond bipolar boundaries brain channel characteristic chosen clear coefficient coil comb combination combinations consisted consists constrained correspond cortical created cumulative curvature cutoff dataset datasets deconvolution decreased defined density determine developed deviation diffusion divided dramatically eight eighteen electrical engineering error errors five full generated gradients graphical gray greater grid harmonic head healthy histology indicates intensity inter intra isotropic length long mapping maps measure measured middle million minimize mouse much need noise nuclei oxford parametric partial populations presence probabilistic processed produced produces profile profiles quality quantify quantitative random randomly reconstructed reconstructions reduced regional reliably reproduced reproducibility resolution retest scanner selected short sixteen smaller spatial spin stability step structural structures studies subject subjects subsequently suggests super superior synthetic technology tensor terms tool track tracks trial trials trio twice uncertainty variability variance variances variations visualization white whole yang yield