Meeting Banner
Abstract #1989

Principal Component Analysis Enhanced Dynamic Electron Paramagnetic Resonance Imaging of Cycling Hypoxia in vivo

Gage Redler1, Boris Epel1, Howard J. Halpern1

1Radiation and Cellular Oncology, University of Chicago, Chicago, IL, United States

Hypoxia in tumors affects their malignant state and resistance to therapy. These effects may be more deleterious in regions undergoing cycling hypoxia. Electron paramagnetic resonance imaging (EPRI) has provided a non-invasive, quantitative imaging modality to investigate static pO2 in vivo. However, to image cycling hypoxia, better temporal resolution may be required. The tradeoff between temporal resolution and SNR results in lower SNR for EPRI images with higher temporal resolution. Principal component analysis is presented as a spatiotemporal filter via low-order approximation of EPRI projection data, allowing studies with SNR and temporal resolution necessary to study cycling hypoxia in vivo.

Keywords

accelerated acceptable acquisition acts acute affects allow alternating apparent appears applying approximation assuming basis bearing better biologically bold breathing cellular changing clear clearly component components concentration containing contains correlated correlation covariance cycling defining deleterious depicts deterioration diagram dimensional dotted dynamic electron elucidate elucidates enabled enabling enhanced expected experiment experimental features filter filtered filtering fluctuating fluctuation fluctuations forced form gage gases helps highly hypoxia implications in vivo invasive investigate known latencies live magenta magnitude malignant minimal modality mostly mouse necessary noise oncology onto outlined oxygen paramagnetic pattern periphery physiologic physiological preliminary principal prior produces projection projections quality quantitative radiation reconstruction reduced relevant required resistance resolution resolve response retaining separating simulated sinusoidal space spanned spatial spontaneous static strongly studies subsequently subspace temporal therapy tissue tumor tumors uncorrelated undergoing unfiltered vectors white