Xiaoying Cai1,
Feiyu Chen2, Enhao Gong3, Shi Wang4, Kui
Ying4
1Biomedical
Engineering, Tsinghua University, Beijing, China; 2Department of
Biomedical Engineering, Tsinghua University, Beijing, China; 3Electrical
Engineering, Stanford University, Stanford, CA, United States; 4Department
of Engineering Physics, Tsinghua University, Beijing, China
In this study, we proposed a new framework of combining k-t FOCUSS and a nonlinear filter compressed sensing for high spatial/ temporal resolution real-time imaging by sufficiently exploring image sparsity of k-t domain and gradient. Simulation results demonstrate the proposed method performs better in eliminating artifacts and keeping structure details.