Meeting Banner
Abstract #1437

A New Framework for Real-Time MR Imaging by Using Time and Gradient Sparsities

Xiaoying Cai1, Feiyu Chen2, Enhao Gong3, Shi Wang4, Kui Ying4

1Biomedical Engineering, Tsinghua University, Beijing, China; 2Department of Biomedical Engineering, Tsinghua University, Beijing, China; 3Electrical Engineering, Stanford University, Stanford, CA, United States; 4Department of Engineering Physics, Tsinghua University, Beijing, China

In this study, we proposed a new framework of combining k-t FOCUSS and a nonlinear filter compressed sensing for high spatial/ temporal resolution real-time imaging by sufficiently exploring image sparsity of k-t domain and gradient. Simulation results demonstrate the proposed method performs better in eliminating artifacts and keeping structure details.

Keywords

achieved acquisition always another applications artifacts assumption attention audience avoid basic batch better biomedical blur breast carried caused certain challenging channel china choosing clinical coil combines combining compensate completed consideration constrained construction cost denotes detail details diagnosis diffusion domain drawn dynamic edge edges effective electrical eliminates eliminating encoding engineering error existing explores exploring fast fewer filter filtering firstly frame frames framework full fully function future general gong gradient great guess help highly hong improvement improving in vivo introduced introducing keeping kinds laura least like lose make many matrix median medical minimization monitoring motion nature needed next nonlinear padding periodic physics potential practical practice predicted prediction preliminary previous probably problem process propose proposed quality real reconstruct reconstructed reconstruction reducing reduction residual resolution retrospectively sacrifice sampled secondly sensing several simulations since solution solved solving space sparse sparsity spatial step structure subject sufficiently system target temporal therapy together trans transform transformation treatment update utilizes variation zero