Meeting Banner
Abstract #0936

Fiber-Driven Resolution Enhancement of Diffusion-Weighted Images - An Evaluation Using High Resolution Data

Pew-Thian Yap1, Hongyu An1, Yasheng Chen1, Dinggang Shen1

1Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, United States

This abstract presents a post-processing algorithm for effective resolution enhancement of diffusion-weighted images by leveraging local fiber continuity. This algorithms allows us to increase the image resolution from the typical (2mm)^3 to (1mm)^3 with great agreement with actual (1mm)^3 scans. Since the algorithm does not rely on any special hardware or acquisition sequences, it can be applied to all existing data for increasing structural visibility, making it a very valuable tool for aiding identification of abnormalities and in applications such as tractography, segmentation, and registration.

Keywords

able abstract according achieve aligned allows always anisotropic anisotropy applied assumption attainable averaging axial background best bias blurring brain chapel characterized circuitry coded collection color coming compute configuration continuous contributed control correction define defined described describes determine determined diffusion directional distance distances distribution divided domain driven effective eight elements enhanced enhancement enhancing ensures estimation evaluate evaluation every falloff fiber fibers field fractional function fundamental gather generate gives giving greater greatly grid hill implies indicate indication interpolation length leveraging likely linear local locally location luxury medicine misaligned neighborhood neighboring noise north note often orientation original otherwise parallel perpendicular porter post premise preserve prevents probability probe processing profile profiling proposed radial radiology realistic reconstruct reconstructed reconstruction removed resembles resolution respect respectively respects rich sampled scanned scanning sensitive significantly situation smaller spatial squared statistical steps streamlines structures suffers traversed unbiased variance various vicinity whether