Meeting Banner
Abstract #0840

Tractography from Regularized High Resolution Rs-EPI Diffusion Weighted Imaging

Gernot Reishofer1, Christian Langkammer2, David Porter3, Karl Koschutnig4, Margit Jehna1, Robert Merwa5, Franz Ebner1

1Radiology, Medical University of Graz, Graz, Austria; 2Neurology, Medical University of Graz, Graz, Austria; 3MR R&D, Siemens AG, Healthcare Sector, Erlangen, Germany; 4Institute of Psychology, Universtiy of Graz, Graz, Austria; 5Medical Engineering, Upper Austria University of Applied Sciences, Linz, Austria

Readout-segmented echo planar imaging (RS-EPI) with 2D navigator-based reacquisition is a new promising technique that enables the sampling of high resolution DWI with reduced susceptibility artifacts. Giving the fact that long scan times are required for high SNR due to the measurement of two or more averages, we set out to regularize the diffusion tensor from RS-EPI DWI based on one measurement. The proposed total variation based regularization algorithm is user independent since the regularization parameter is evaluated automatically and accounts for spatial varying SNR. Tractography from regularized data show a significant improvement compared to unregularized data.

Keywords

acceptable according accounting active advance applicability application artifacts audience automatic automatically becomes biomedical bound carried central channel circuits clinical clinically coil comparable complex component components converted convincing count dataset datasets density dependence dependent derived despite diffusion dimensional domain element enabled enables engineering entropy evaluated evaluation every exhibition feasible features fiber fibers firstly fractional function general gradient head healthy highest hospital improves independent institute iteration length limiting local locally long making measured measuring medical meeting merits middle minimization minutes navigator necessary neurology neurosurgery noise optimization overall papers parallel planar porter previously processed produce promising proposed psychology radiology reacquisition readout reduced reduction regular regularization regularize regularized regularizing related relation required resolution respect revealed reveals sampling sciences secondly sector segmented segments sensitivity separate served significantly slices software spatial specifically step structures sufficient susceptibility system table tanner target tensor track tracts transactions transverse undisputed update updated upper user variance variation variations varies visually volume volunteer