Meeting Banner
Abstract #0638

Classification of Sodium MRI Data of Cartilage with Machine Learning and Logistic Regression

Guillaume Madelin1, James S. Babb1, Ravinder R. Regatte1

1Radiology Department, New York University Langone Medical Center, New York, NY, United States

Statistical learning algorithms, such as support vector machine (SVM), k-nearest neighbor (KNN), naive Bayes (NB) and discriminant analysis (DA), and logistic regression (LR), are compared for classifying subjects with and without osteoarthritis (OA) from sodium MRI data of articular cartilage at 7T. The best accuracy results are obtained with SVM and LR. SVM can classify the data with an accuracy of 78-80% by combining MRI measurements acquired with and without fluid suppression. LR generates a slightly lower accuracy (74-79%), but use only a single MRI measurement acquired with fluid suppression.

Keywords

accuracy acquisition agar annual applied articular best bottom cartilage characteristic chosen class classification classifications classify combination combinations combined combining component composed concentration concentrations consecutive content control controls cover datasets defined deviation diagnosing differentiating discriminant distance distribution efficient eliminating empirical euclidean eugenics except expected expense fisher fluid function funding generate gold healthy identify improvement improvements include institute inversion investigation joint kernel knee known learning lewis linear list logistic loss machine majority measured medical metric much naive narrowing nearest needed neighbor neighbors optimization original osteoarthritis partial patients phantoms placed positive predictors presence principal prior probability processing programming progress quadratic quantification radial radiology randomly recovery regression remaining rule selection sensitivity slices slightly sodium space specificity statistical stepwise subject subjects support suppressed suppression table theory tissue training trans true type variable vector volume volunteers