Meeting Banner
Abstract #0610

Compressive Diffusion MRI Part 1: Why Low-Rank?

Hao Gao1, 2, Longchuan Li3, Xiaoping P. Hu3

1Department of Mathematics and Computer Science, Emory University, Atlanta, GA, United States; 2Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States; 3Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States

This work compares several sparsity models for dynamic MRI with the focus on diffusion MRI. The low-rank model, a global sparsification of diffusion images via SVD, generally was found to be the best model, while the rank-sparsity decomposition was shown to be the best when the diffusion images are non-low-rank.

Keywords

account actively adaptive adopt affects aligned although applications apply approximated approximation assume best better biomedical central certainly characterized column components compressive computer consists constructed contrast correlated counterparts criterion decomposition detail dictionary diffusion dimension dynamic engineering error errors falls fifth focus fold fourth frequency functions generalizes generally global gold gradient hand ideal important index indicate instead institute involve involves iteration jointly last learning likely local mathematically mathematics matrix minimized model models naturally notable note often original part partially performance phys pixel principal problematic quality radiology rank reconstructed reconstruction reconstructions remains report represented respectively science sciences sensing separable several since slice smallest solved space sparse sparsity split stopping studied suggesting supposition take technology tensor terms theory third trans transform trivial utilized variation various varying vector wavelet wise zoom