Meeting Banner
Abstract #0463

in vivo Imaging of Electrical Properties of Human Brain Using a Gradient Based Algorithm

Jiaen Liu1, Xiaotong Zhang1, Sebastian Schmitter2, Pierre-Francois Van de Moortele2, Bin He1, 3

1Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States; 2Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; 3Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States

Being able to image tissue electrical propertiesconductivity and permittivityin vivo using MRI, Electrical Properties Tomography (EPT) has drawn considerable interests from the community. Currently, most EPT studies have focused on the homogeneous Helmholtz equation based method, whereas the ignored gradient term of electrical properties could potentially carry rich information for a more reliable reconstruction. In this study, a new gradient-based algorithm, called G-algorithm, for EPT was developed, and initial feasibility was demonstrated through in vivo human brain experimentation at 7T.

Keywords

absolute according acquisition actual aiming analyzed anatomy another approaches biological biomedical boundaries brain called carry certain channel channels circularly clearly coil collected combining community component components conductivity considerable contrasts correlation currently delineated density depend derive derived determined deviation directly distribution electrical engineering equals equation equations errors even example expected experiment experimentally exploited explore feasibility field fields fluid foundation frameworks free frequency future gauss general generality gradient grateful head homogeneous human ignored ignoring impedance in vivo include individual inhomogeneous insights investigated investigation knowledge laboratory literature long magnitude maps measurable measured medicine merged multichannel noise observation paper performance permeability phys polarized principle problem properties proposed proton protons quantitative receive receiving reception reciprocity reconstructed reconstruction reduce remove removed removing reported represent resolution rich sample scientific segmentation series simple slices solving statistics strength strong structural studies substantially summarized symmetric symmetry table term theory threshold tissue tissues together tomography trans transceiver transmit transmitting types useful utilizing whereas white