Meeting Banner
Abstract #0127

ESPIRiT Reconstruction Using Soft SENSE

Martin Uecker1, Patrick Virtue1, Shreyas S. Vasanawala2, Michael Lustig1

1Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States; 2Department of Radiology, Stanford University, Stanford, CA, United States

Recently, a new technique to estimate sensitivity maps from the calibration data has been proposed (ESPIRiT). In the ideal case, this technique yields a single set of sensitivity maps, which can be used with SENSE. With data corruption, multiple sets of maps naturally appear when using this method. They correspond to additional signal components which are implicitly taken into account in SPIRiT (and GRAPPA), but do not fit the SENSE model using a single set of maps. Here, we propose soft SENSE, which uses multiple weighted sets of maps and has similar properties as SPIRiT.

Keywords

ability accelerate acceleration according account achieves acquisitions additional aliasing allows appear arbitrary around artifacts attempt auto better calibration call capture cause certain channels chemical coil combined components computer consistent constraining constraints constructed correlations correspond corresponds corrupted corruption curve design disc discrete domain eigenvalue eigenvalues eigenvector electrical encodes encoding engineering extending fast flexibility formulated function generalized ghosting highest human ideal ideally implementation implicit implicitly inconsistencies inconsistency inconsistent instead iterative kernel knee maps martin matrix meets might model motion neighboring often operator optionally parallel partially pixel problems processed produces properties propose proposed radiology recently reconstructed reconstruction reconstructions reduced regularization related relaxed removes robust sampling sciences self sense sensitivities sensitivity sets severe since smooth soft solution space sparsity spin spirit strict submitted subspace taken term terms theory tolerant transform transition truncation virtue wavelet wise yielding yields zero