Meeting Banner
Abstract #0102

The Use of k-Means Clustering and Bayesian Inference Framework for the Processing of Vessel-Encoded P-CASL Images as Compared with Super-Selective P-CASL MRI

Nolan S. Hartkamp1, Michael Helle2, Michael A. Chappell3, 4, Thomas W. Okell4, Reinoud P H Bokkers1, Jeroen Hendrikse1, Matthias J.P. van Osch5

1Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; 2Philips Research Laboratories, Hamburg, Germany; 3Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom; 4FMRIB Centre, University of Oxford, Oxford, United Kingdom; 5C.J. Gorter Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands

We show that the territorial perfusion maps produced by VE p-CASL agree reasonably well with the perfusion maps acquired with super-selective p-CASL. Special consideration should be taken when using k-means clustering since it tends to fail in regions with high mixed perfusion, such as the deep gray matter. VE p-CASL with k-means clustering appears suitable as a general purpose T-ASL strategy, but the Bayesian framework is preferable since it can determine mixed perfusion. This is however only reliable where the VE p-CASL images contain sufficient vessel selectivity. To accurately determine the perfusion territories of a vessel, super-selective p-CASL is still recommended.

Keywords

according accurately achieved actual agree agreement always anatomical anterior appears arrows arterial arteries artery basilar biomedical boundaries carotid circulation clustered clustering coefficient consideration contain continuous copied cortical cycle cycles deep defined depicted detect detected determine dice disagree distance ecology encoded engineering entire error examined excellent fail fair fourteen fractional framework free general generated good gray hamburg healthy identically identify illustrates inference innovative institute internal intersection investigated kingdom labeling laboratories manually maps measure medical misclassification misclassified mixed moderate modified observer outlined output overlap oxford perfusion planning poor post posterior preferable processed processing produced pseudo qualitative quantitative quantitatively radiology reasonably recommended regard reliable scanner science scored selective selectivity similarity since source spatial special spin still strategy sufficient suitable summarized super superimposed superior system table taken technologies tends territorial territories territory vertebral vessel visible volume volunteers