Meeting Banner
Abstract #0040

Resting Brain Networks Revealed by Independent Component Analysis of Cerebral Blood Flow

Senhua Zhu1, 2, Zhuo Fang1, 2, Siyuan Hu3, Marc Korczykowski2, Ze Wang2, John A. Detre2, Hengyi Rao, 12

1Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China; 2Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, United States; 3State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China

The present study used independent component analysis to examine resting brain networks in a large cohort (n=149) of subjects with arterial spin labeling (ASL) perfusion MRI data. Ten CBF networks were consistently identified across the whole and sub-datasets, including the default mode network, bilateral attention networks, primary and second visual networks, auditory network, ventral-medial prefrontal network, dorsal-medial prefrontal network, and two limbic networks. These networks well replicated the resting-state BOLD networks from a sub-group (n=81) and support the feasibility of using CBF connectivity to examine resting brain function.

Keywords

adults analyses analyzed arterial assessed attention auditory blood bold brain carried cerebral china clearly cognitive component components connectivity consistently continuous contrast correlated coverage dataset date default despite detecting direct dominate dorsal driven entered examined except extracted fang findings flow fluctuation fluctuations frequency function functional functions gift grocer healthy identified independent john labeling laboratory learning limbic literature mainly measure measures medial minutes mode network networks noise perfusion primary processing properties pseudo psychology randomly reconstructed reduced replicated reported representing reproducible rest resting revealed sample scanned scanner sensitive series spin split studies subjects suggest suited susceptibility temporally toolbox trio twenty various ventral visual volumes whole years