Meeting Banner
Abstract #4396

Parametric Macromolecular Baseline Assessment Using Prior Knowledge from Inversion Recovery Signals Measured at 9.4 T

Maria Isabel Osorio Garcia1, 2, Diana M. Sima1, 3, Flemming Ulrich Nielsen4, Tom Dresselaers4, Fred Van Leuven5, Sabine Van Huffel1, 2

1Dept. Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Leuven, Belgium; 2IBBT-K.U.Leuven Future Health Department, Leuven, Belgium; 3IBBT-K.U.Leuven Future Health Department, Leuven, Belgium; 4Biomedical Nuclear Magnetic Resonance Unit (MoSAIC), Katholieke Universiteit Leuven, Leuven, Belgium; 5Experimental Genetics Group LEGTEGG, Katholieke Universiteit Leuven, Leuven, Belgium

Besides the metabolites, MRS signals also contain macromolecules and lipids, which are normally observed in the frequency regions between 0.5 and 2 ppm. However, at high magnetic fields, numerous resonances appear along the whole spectrum band. In the frequency domain, these resonances appear as a baseline overlapping with the metabolite peaks, which complicates quantification. In the literature, several advanced acquisition techniques using inversion recovery, parametric and non-parametric methods have been widely used. We propose a parametric way of extracting characteristic resonances from a set of inversion recovery signals using AMARES and include them in the quantification method as additional components.

Keywords

accommodate accordance acquisition address affected animals appear appeared appropriate approximation assessment available background band basis besides better biomedical brain brains built characteristic characterization chemical circular close comparable complicates components compute computed concentration conditions constraints contain contaminated contamination contributions corrected create dept detection diagnostic diffusion diseases domain eddy errors evaluation excellence experimental extended extracting fact field fields focused frequency genetics good hand heads health healthy hermitian human identified important in vivo include included individual inversion knowledge known lipid lipids literature location locations long macromolecular macromolecule macromolecules maria meas measured metabolic metabolite metabolites mice model modeling mosaic motivation mouse normalization notice nuclear nulled optimized overlaps parametric part peaks prior problems processing profile proposed providing pulse quantification quantified real recovery rectal reducing removal repetition reproducible requires respectively routines scanner selection several shimming simulated spectra spectral spectroscopy spectrum strengths studies substances supported suppression systematic together true twelve unavoidable unit unsuppressed useful variations various water whole widely wild