Meeting Banner
Abstract #4262

Analytical Description of Magnetization Transfer Effects on the Transient Phase of Balanced SSFP

Monika Gloor1, Klaus Scheffler2, 3, Oliver Bieri1

1University of Basel Hospital, Radiological Physics, Basel, Switzerland; 2MPI for Biological Cybernetics, MRC Department, Tbingen, Germany; 3University of Tbingen, Neuroimaging and MR-Physics, Tbingen, Germany

An inversion recovery (IR) balanced steady-state free precession (bSSFP) sequence has been proposed for fast T1, T2, and spin density quantification. It has recently been shown that the presence of magnetization transfer (MT) effects on the transient phase of bSSFP experiments with short RF pulses leads to considerable deviations in calculated T1 and T2 values. In this work, an analytical expression of the two-pool IR bSSFP signal is presented taking MT effects into account. Numerical simulations of the Bloch equations are used to confirm the validity of the approximations made, and comparisons of the new equation to measurements are shown.

Keywords

according account accounted adiabatic analytical appropriate approximation axial balanced bandwidth basis bingen biological blue brain calculating clinical confirm considerable correspondence corresponds course curves cybernetics decay definitions denotes density depend derivation derived described description deviations displaying distributed dots duration effective eigenvalue eigenvectors either equally equation equations exact exchange excitation exemplary exponential expression fast fixed forms forward fraction free function good gray hospital human ideal in vivo initial introduced inversion investigated lead long magnetization matrices matrix measured model numerical oliver parallel physics pixel pool potential precession preparation product profile proposed protons pulse pulses quantification quantitative radiological real realized receiver recently recovery represents resolution response restricted rotation saturation seems segmented series shaped short simulation simulations sled slice solid solution spin steady successive system take taken takes theory transfer transient transition variable vectors verification white