Meeting Banner
Abstract #4256

Reconstruction of 3D Radial MRI with Linogram Sampling

Naoharu Kobayashi1, Djaudat Idiyatullin1, Curtis A. Corum1, Michael Garwood1

1Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

Linogram sampling, introduced to radial MRI about 20 years ago, is a semi-Cartesian k-space sampling method, where the sampling pattern is a concentric square (2D) or cubic grid (3D). For linogram sampling, there is a corresponding reconstruction algorithm known as linogram reconstruction that does not need explicit interpolation and simplifies the Jacobian calculation, i.e. density correction. Therefore, linogram reconstruction has potential to improve resolution, minimize interpolation errors, and reduce computational time. In this study, we show point spread functions and reconstructed images from 3D linogram data that were calculated with the three reconstruction methods: gridding, backprojection and linogram reconstruction.

Keywords

according accordingly advantageous agar aliasing angular apparent applied audio bandwidth blurring calculation chirp choice comparable component composed computational concentric constant convolution convolving coordinate coordinates correction correspond cost cubic dashed density derivative developed dimension direct discrete done double equation errors exception excitation experiment expressed filtered filtering fixed foundation function functions gapped general generated grant grid health held horizontal house improve independent inner inside institutes integral integrating integration interpolation introduced iteration iterative kaiser known lecture linear magnet majority manner minimize mutually namely national nominal notes numerical numerically object orients orthogonal overlapping parallelized pattern phantom phys pipe pixel polar possibly programs projection projects proportional pyramids quad radial reconstructed reconstruction rectilinear reduce relatively remaining report resolution respectively sampling scaling secant semi separately sets sharp simple simplifies simulated simulation simultaneous since slightly space spacing spent spread square sweep swift system theoretical trans transformation trend typically unit variables vector view views ways width window xenon years yellow