Meeting Banner
Abstract #4248

Accelerated Dynamic MRI Using Multicoil Low-Rank Matrix Completion

Ricardo Otazo1, Cagdas Bilen2, Yao Wang2, Leon Axel1, Daniel K. Sodickson1

1Bernard and Irene Schwartz Center for Biomedical Imaging, NYU School of Medicine, New York, NY, United States; 2Department of Electrical Engineering, Polytechnic Institute of NYU, Brooklyn, NY, United States

Low-rank matrix completion is proposed as a new generalized approach to combining compressed sensing and parallel imaging by jointly exploiting implicit temporal and coil correlations without an explicit sparsifying transform or coil calibration procedure. A low-rank k-t matrix can be obtained by concatenating overlapping k-space blocks from consecutive time points and multiple coils to form the different columns. Reconstruction of k-t undersampled data is performed using an iterative singular value thresholding algorithm. We demonstrate the feasibility of reconstructing undersampled cardiac cine data.

Keywords

accelerate accelerated accelerations acquisition acquisitions array arrows artifacts better biomedical blocks blue blurring body calibration card cardiac cine coil coils column columns combination combine comp completing completion compressed computing concatenating consecutive constant correlated correlation correlations create decomposition density dependent described dynamic election employed enable enables encoding engineering entries explicit exploited exploiting fast fold form frame frames fully future generalized grant highly hods implicit improve includes incoherence indicate institute intrinsic introduced iteration iterative jointly local location lowest maps math matrix medicine missing models need oral overlapping parallel pattern performance procedure promotes proposed random rank rather recently reconstruction representative requires retrospectively sampled school sense sensing separately singular skew space spar sparse speed tempo temporal thresholding toolbox transform transforms trio truncating trying unite updated variable vectors zero