Meeting Banner
Abstract #4216

Optimized 3D Fast Spin Echo Imaging at 7T

Manojkumar Saranathan1, Michael Zeineh2, Geoffrey A. Kerchner3, Mohammad Mehdi Khalighi4, Marcus T. Alley2, Brian K. Rutt2

1Radiology, Stanford University, Stanford, CA , United States; 2Radiology, Stanford University, Stanford, CA, United States; 3Neurology and Neurological Sciences , Stanford University, Stanford, CA, United States; 4Global Applied Science Labatory, GE Healthcare, Menlo Park, CA, United States

Fast Spin Echo (FSE) imaging is increasingly used for fast T2 weighted imaging applications. However, at 7T, the sequence is heavily limited by SAR considerations, severely reducing its time efficiency. Flip angle modulation schemes like SPACE and XETA [1-2], have been proposed for 3D FSE that enable the use of longer echo-train-lengths and help lower SAR due to reduced refocusing flip angles. We optimized the 3D XETA refocusing flip angle train for T2 weighted brain imaging at 7T based on SAR, signal intensity, contrast and point spread function (PSF) considerations, using T1 and T2 values of white/grey matter at 7T. Additionally, we explored the use of composite excitation pulses to mitigate signal loss from B1 inhomogeneity effects. Whole brain 3D T2 imaging was performed on patients using these modifications.

Keywords

acceleration account additionally amplitude applications applied arrow arrows artifacts aspect assumed blue brain cognitive comp composite contrast coronal cost default disease duration early efficiency excitation explored extended fast fixed function global grant graph hard help hence include increasingly inferior influence informed insensitive intensity latter like limited loss mate matrix measure minim minimal minimizing mitigate neurological neurology normalized note offset onset optimal optimized pared patients pends permits ponding pulse pulses quired radiology reduced reducing refer refocusing relatively respectively scanned science scripts section sections shading simulation since slab space spin spread subs support takes together train transmit uniform variations volume white whole width yield