Meeting Banner
Abstract #3701

On Using Structural Network Patterns for Prediction of Genetic Risks in Schizophrenia

Madhura A. Ingalhalikar1, Luke Bloy1, Drew Parker1, Raquel Gur2, Ruben Gur2, Ragini Verma1

1Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, United States; 2Brain Behavior Laboratory, University of Pennsylvania, Philadelphia, PA, United States

This study investigates the presence of endophenotypic brain patterns in the family members of patients with schizophrenia via a structural network analysis. High dimensional gender specific classifiers based on local and global network properties were constructed for patients diagnosed with schizophrenia or schizoaffective disorder and healthy controls. The classifier associated a distributed network connectivity score (DNCS) with each of the asymptomatic family member. Forty percent of the FMs were classified closer to patients. Furthermore, females displayed enhanced genetic susceptibility based on the specificity of the classifier and the DNCS scores of the family members.

Keywords

abnormalities abnormality absolute accuracy affine aided asymptomatic attributes behavior biological biomedical brain centrality characteristic choosing class classification classified classifier classifiers classifying closer coil complex computed computing concentrated connectivity consisted control controls cortex cortical cross degree density diffusion dimensional disease displays earlier efficiency efficiently employed extent extracted family feature features females finally focuses fold frequently frontal furthermore genders genetic global harness heterogeneous hierarchical highly identify important included laboratory length linear lingual local locate machine macroscopic males matrices measures members middle model models modularity network nodal nodes output parker particular path pathological patient patients pattern patterns plot plotted potential power predisposition probabilistic properties psychiatry quantifying ranking ranks regional represent risk risks role samples scanner schizo schizophrenia score scores section segmentations selected selection sensitivity shot since space spatially specificity spectrum strength strengths structural structures studies subject subtle suggesting superior though train training trait transferred transformation transitivity unaffected understanding utilized validated validation vector vital vulnerability