Meeting Banner
Abstract #3628

Power and Variability Analysis in Diffusion Kurtosis Imaging: Sample Size Estimation in Three White Matter Structures

Filip Szczepankiewicz1, 2, Alexander Leemans3, Pia Sundgren, 14, Ronnie Wirestam2, Freddy Sthlberg1, 2, Danielle van Westen, 14, Jimmy Ltt4

1Department of Diagnostic Radiology, Lund University, Lund, Sweden; 2Department of Medical Radiation Physics, Lund University, Lund, Sweden; 3University Medical Center Utrecht, Image Sciences Institute, Utrecht, Netherlands; 4Center for Medical Imaging and Physiology, Skne University Hospital, Lund, Sweden

Statistical power and variability analysis was performed using 20 sets of DKI data. The mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) and radial kurtosis (RK) were determined in the cingulum, corpus callosum and corticospinal tract. Sample sizes required to detect a 10% difference with a power of 0.9 were calculated. Variability was divided into inter-subject biological differences and that arising from measurement noise. Minimum sample sizes varied across structures and metrics, but were approximately 15 for MD, FA and MK, and approximately 30 for RK. The inter-subject biological variability was the main contributor to total variability.

Keywords

affect allows anterior approximately assessed assumptions biological blue body bootstrap bootstrapping brain calculations central comp complete component contiguous contributed contributor course damage datasets demands detect determine deviations diffusion disease diseases employed encoding equal evaluated evaluating evaluation extracted find focal framed function gnostic grant hand healthy house identify impair implies increasing indicated inferior instead institute inter introduced kurtosis largest local many marker meter metric metrics motor much need needed noise normally parts patient peduncle ping pink position possibly post power primary prior processing produced radiation radiology rather reduced reflected reliably represented requires respectively sample segments sensitivity separating side significance slices smallest spatial spatially statistical stroke structure structures stud studied subdivided subject subjects subsegment subsegments suggests table tensor tract tracts validated variability variance varying ventricle volume volunteer volunteers water whereas white whole