Meeting Banner
Abstract #3618

Evaluating Tractography in Spatially Normalized DTI Data

Nagesh Adluru1, Do P. M. Tromp1, Hui Zhang2, Andrew L. Alexander1

1University of Wisconsin-Madison, Madison, WI, United States; 2University College London, United Kingdom

Tract specific analyses allow for statistical mapping of individual differences in specific white matter (WM) pathways. A crucial step involved in such advanced analyses is performing tractography in spatially normalized diffusion tensor imaging (DTI) data. Spatial normalization of DTI data often involves highly non-linear transformations of the acquired data with embedded interpolations of the data. Our study aims at investigating the effects of such transformations on the anatomical consistency of the normalized space tractography compared to the acquired space tractography. Our results demonstrate that DTI spatial normalization does preserve properties of WM tractography with a high degree of consistency.

Keywords

affect analyses anatomical anatomy approaches article axis benefits best bias binary black blue boring bottom brain build bundle butt circles college collinear combined compute connection considered consistency consistent cook corpus corrected correlations cortex degree diffusion distinct distortion eddy eight embedded emerging employed estimation evaluate evaluating evaluations explored extensive extract extracted faithful field filter generated gray head healthy hence hypotheses identified identifying implications important inconsistencies individual inferior influence inherent inter intercept inverse isotropic just kingdom larger like limitations linear long magenta manually maps masks measures ming motion much native network norm normalization normalized often overall package pairs particular particularly path pathways population preserve primarily processing produces properties protocols quality radial reflect registering registration reorientation repeated repeats report reproducibility resolution scanner sets setting shapes similarity smith software space spaces spatial spatially structure structures studies subjects system template tensor tensors term text tract tracts transformed versus visual volumes warped warping whether white whole worse