Meeting Banner
Abstract #3595

Towards Assessing Spatial Normalizations Employing DTI and HARDI Models

Luke Bloy1, Alex R. Smith2, Madhura Ingalhalikar2, Robert T. Schultz3, Timothy P.L. Roberts4, Ragini Verma2

1Section of Biomedical Imaging, University of Pennsylvania, Philadelphia, PA, United States; 2Section of Biomedical Imaging, Univeristy of Pennsylvania, Philadelphia, PA, United States; 3Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States; 4Lurie Family Foundation's MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States

This study compares the results of using DTI and HARDI based diffusion models as the driving force behind spatial normalization algorithms. Each modality underwent separate state of the art registration pipelines designed to optimally take advantage of each contrast. The deformations resulting from each pipeline were applied to the images of the other modality, allowing for three means of comparison. Both registration pipelines perform similarly when FA variance was used as a means of comparison, however using either FOD or normalized FOD variance HARDI registration performed better. This demonstrates the importance of using HARDI when accurate registration is required.

Keywords

able accurate achieve aligns anatomy applied assessing authors autism biomedical children choice clinical comparable component computed consisted context contrast contrasts correspond cortical crucial datasets defined deform deformation described diffusion diseases disorder eddy either evaluate evident examining family features fiber forms foundation fractional functions goal grad gradient grants hard head healthy hospital improved included integral interpretation journal like local making matte mechanisms medical meeting meters minimizes model models noise normalization normalized outperforms particularly planar population preprocessing press process quired realistic reflect register registered registration registrations removal remove resolution schizophrenia section session sets similarly since smith spatial spin statistical stress studies subject subjects supplied system technology template tensor thank timothy tissue toward traumatic types unique utility utilized utilizes variance variances whereas white wise years