Meeting Banner
Abstract #3572

The Rician Bias in Diffusion MRI: A Technical Overview

Jelle Veraart1, Jan Sijbers1

1Vision Lab, University of Antwerp, Antwerp, Belgium

Many diffusion models require highly diffusion-weighted MR images, which suffer from low signal-to-noise ratio (SNR). Not only the precision of the diffusion model parameter estimators depends on the SNR, the estimators accuracy will also be affected if the Rice distribution of magnitude MR data is not accounted for. We will give a technical overview of on the one hand - the effect of the so-called Rician bias on diffusion model parameters - on the other hand some techniques, which were proposed to reduce/remove the Rician bias.

Keywords

accuracy affected amplitude anal anisotropy apparent appearing applied approximation assumption asymptotic becomes behavior bias biological brain brief called certain clear commonly complex components conditional conditions consistency contains content cope corrections coup depend dependency dependent depends deviates deviations diffusion diffusivity discussed distortions distributed distribution drops eddy efficiency eigenvalue equation equivalent estimation estimator estimators ever example exceeds existing expectation fail favorable features fiber firstly fitting flow focus fractional free function fusion give hand hence highly homogeneous hood impaired importance important in vivo increasing increasingly independently intensity introduce invasive isotropic iterative knowledge lack least like magnitude many measures might mild model models motion noise nonlinear norm often overestimated overestimation overview owing ponds practice precision preferred prior probability properties proposed pros quantification recommended reduce reducing reduction remains remove require restricted rice scheme secondly selection several since solution source spatial spherical squares structural studies suffers task technical tensor terms tissue unique unpublished variables vision water wavelet white zeroth