Meeting Banner
Abstract #3561

Gaussian Phase Distribution Approximation of the Square Wave Oscillating Gradient Spin-Echo (SWOGSE) Diffusion Signal

Andrada Ianus1, Bernard Siow1, Hui Zhang1, Daniel C. Alexander1

1University College London, London, United Kingdom

This work presents analytical formulae for both free and restricted diffusion NMR signal from a square wave oscillating gradient spin-echo (SWOGSE) sequence. The expressions are computed using the Gaussian Phase Distribution approximation and we demonstrate for cylindrical geometry. The results for different radii, frequencies, and gradient strengths are compared with the values obtained from Monte Carlo diffusion simulation. In all cases the error was less than 3% of the signal and the total computation time was reduced by several orders of magnitude, which enables model fitting applications, e.g. to generate whole brain parameter maps.

Keywords

absolute according adapted advantage amplitude analytic analytical application applied appropriate approximation assuming attenuated attenuation axis better brain calculations choosing coefficient college complex computational computationally compute computed computes condition continuity continuous cross curves cylinder defined depend dependent depicted derivation derive described diffusion distribution easily enables equation equations equivalent errors essential exceed expensive experiment expression expressions faster field fitting form forms free frequencies frequency function functions general generate generating geometric geometries geometry give gradient guideline hall histological hours illustrate illustrated implemented impractical inside kind kingdom lacks length lengthy magnitude maps matrix mentioned model modified molecules nuclei numerical occur ones optimal oscillating oscillations others parallel percent perpendicular plots pore previous price probe pulse pulsed quantifying quantitative quite radius recent reduced representation represented restricted running satisfies scale scenarios schematic schematically sensitivity several shells simulated simulation simulator solve special spheres spherical spin square strength strengths suggests suitable tenth theory took unattenuated unweighted water wave whole written