Meeting Banner
Abstract #3559

Local Regularization of the Diffusion Tensor by Means of Independent Component Ananlysis and Total Variation - Application to High Resolution DTI

Gernot Reishofer1, Karl Koschutnig2, Christian Langkammer3, Stefan Ropele3, Stephen Keeling4, Robert Merwa5, Franz Ebner

1Radiology, Medical University of Graz, Graz, Styria, Austria; 2Psychology, University of Graz; 3Neurology, Medical University of Graz; 4Mathematics and Scientific Computing, University of Graz; 5Medical Engeneering, Upper Austria University of Applied Sciences

Advanced scan techniques in diffusion tensor imaging (DTI), such as readout segmented EPI enable high resolution DTI, but suffer from low signal to noise ratio. In this work we present a novel method for the spatially dependent regularization of the diffusion tensor based on independent component analysis and total variation regularization. We demonstrate that the diffusion tensor evaluated from noisy DWI data is successfully denoised, while fine structural details are preserved. This allows for the application of high resolution DTI in a clinically acceptable time.

diffusiontensornoiseregularizationindependentmedicalregularizedresolutionvariationdependentlocaloriginalreadoutsegmentedtensorscomponentcomponentsdetailselementsevaluatedfieldmapsproposedsubspacevarianceanatomicalapplicationappliedcarriedminimizenovelpreservedradiologyrepresentingspatially