Meeting Banner
Abstract #3550

Error Analysis and Correction of ADC Measurements for Gradient Non-Linearity

Dariya I. Malyarenko1, Brian D. Ross1, Thomas L. Chenevert1

1Radiology - MRI, University of Michigan, Ann Arbor, MI, United States

Gradient non-linearity leads to spatially-dependent b-values and consequently significant non-uniformity error (~10-20%) in ADC measurements over clinically-relevant FOVs. For quantitative analysis of ADC errors, a gradient correction tensor model of spatially-dependent gradient fields was used. The model included the effect of imaging gradients, gradient cross-terms and their influence in presence of media anisotropy. All-inclusive error analysis allowed finding minimal number of spatial correction terms to achieve sufficient ADC error reduction (by 75-95%) for tissue-like diffusion anisotropy. Simplified ADC correction algorithm is suggested for implementation on MR systems based on known gradient hardware properties

Keywords

absolute accounts achieved achieves amplified anisotropic anisotropy applied arbor assumed axes blue builds bulk characteristics clinical combined commercial complete complexity comprehensive consider consistent contract contribution control controlled coordinates corrected correction cross cylindrical dependence dependent depends described description deviation devised diagonal differentiation diffusion distribution effectively elements error errors exceed expansion experimental field fields flat fluid full gradient gradients grant gray harmonic health histograms illustrated included inclusion increasing institutes isotropic known leading like linearity mapping matrix measured media medium middle minimal mode model modeled modest national nine numerical observations orientation original orthogonal phantom physical pixel plus practical precisely previous primary procedure producing properties pulses quantitative radiology reduction removed requires residual respect rotated scenario section seeks simplified simulated simultaneous source spatial spatially spherical statistics studies subsequent sufficient support surface symmetry system systems temperature tensor term terms tissue true uncorrected uniformity varied volume water zero