Meeting Banner
Abstract #3443

A Regularized K-Space-Based Method for Susceptibility Tensor Imaging

Wei Li1, Bing Wu1, Chunlei Liu1, 2

1Brain Imaging & Analysis Center, Duke University, Durham, NC, United States; 2Radiology, Duke University, Durham, NC, United States

Magnetic susceptibility typically has high contrast and SNR, and is related to the fiber angle with a simple sine-squared relationship, thus provides a promising candidate for extracting the white matter fiber orientation information from gradient echo MRI. The application of susceptibility tensor imaging, however, can be hampered by the imperfect registration due to different image distortion at different head orientations. In this work, we developed a regularized k-space-based method for susceptibility tensor reconstruction, which can effectively reduced the artifacts caused by imperfect registration and enhance the robustness of susceptibility tensor imaging.

Keywords

according addition adjusted affect amount anterior application applied around arrow artifact artifacts assumes background better bing blurred boundaries boundary brain brains calculation candidate certain characterized coded coil color column comparing component constraint contrast contrasts cost cover degree dependent derived determined directly distortion duke effectively eigenvector eigenvectors eliminated empirically enhancing ensure equations erroneous errors evenly except exclusively extracting fiber field fixed flow formalin frequency function gives gradient gray green head healthy hence human imperfect improves in vivo interfaces intrinsic isotropic likely linear magnet magnitude maps matrix mouse much normalized north orientation orientations particularly perfusion peripheral promising property proposed quadrature radiology reasonably recalled recent reconstruction reduce reduced reducing registration regularization regularized related relationship removed represented resolution ringing robustness roughly sampled scanned scanner selected sharp sharper significantly since sine slightly smooth space spatial spherical spoiled squared strong strongest studies surface susceptibility tensor tensors term tissue tracking transition unwrapped unwrapping useful usually variation variations vector volunteer white