Meeting Banner
Abstract #3406

Inherent Motion Correction for Multi-Shot Spiral Diffusion Tensor Imaging

Trong-Kha Truong1

1Brain Imaging and Analysis Center, Duke University, Durham, NC, United States

Multi-shot spiral imaging is a promising alternative to echo-planar imaging for high-resolution diffusion tensor imaging. However, subject motion in the presence of diffusion-weighting gradients causes phase inconsistencies among different shots, resulting in signal loss and aliasing artifacts in the reconstructed images. Such artifacts can be reduced by using a variable-density spiral trajectory or a navigator echo, however at the cost of a longer scan time. Here, we propose a novel iterative phase correction method that can inherently correct for these motion-induced phase errors with no scan time penalty.

Keywords

acquisition affected aliased aliasing among anisotropy apparent artifacts background body brain caused causes choosing chosen coefficient computation computed computing concept consists constant consuming contain containing contribute correct corrected correction cost currently defined density determined diagram diffusion drastically duke effectiveness energy equation error errors even extend extended final finally five fractional frank full gating generally gradients grant head healthy hence improve inconsistencies induced inherent inherently initial instructed iteration iterations iterative iteratively known linear long longer loss maps matrix metrics minimized model motion navigator nonrigid novel optimal optimization padding parallel particularly pediatric penalty pixel pixels planar populations presence promising proof propose proposed quality recently reconstructed reconstructing reduce reduced reducing remain representative residual resolution restrained rigid rotational scanner schematic separately series severe shot shots significantly simulations since slice solving space spatially spiral step still studies subject subjects subsequent sufficient tensor theoretical though tolerate trajectory translational types uncorrected useful validate variable vector whereas whose zero