Meeting Banner
Abstract #3189

Automated 3D MRSI of Patients with Brain Tumors

Eugene Ozhinsky1, 2, Daniel B. Vigneron1, 3, Susan M. Chang4, Sarah J. Nelson1, 3

1Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; 2UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, United States; 3Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, United States; 4Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States

This study evaluated the performance of automatically prescribed 3D MRSI protocol in patients with brain tumors. The data shows robust coverage of the tumor, high consistency of prescription and very good data quality within the T2 lesion. It validates the feasibility of automatically prescribed 3D MRSI in routine brain tumor imaging.

Keywords

able achieve acquisition additionally advanced aligned almost analyzing anatomical anterior approaches assessed attributed automated automatic automatically avoiding bands became better bioengineering blue brain came choline chosen clinical closer consistency consistent cover coverage covered crucial customized dataset defined despite detection developed diagnosis diagnostically difficulties difficulty disease diseases easily eight elevated ensure ensured evaluating evaluation exam examinations example exams feasibility focused generated goal good graduate grants green implemented implementing important improve improved included inferior interfere interpretation intersection laboratory larger least lesion lesions lipid magnitude malignant manually maps mask masks metabolic metabolite modality much nelson neurological oblique optimization orbits orientation outside overlap part patient patients peak peaks placement positioning posteriorly prescribed prescription press previous progresses project proposed protocol protocols proton quality quantification quantify radiology realizing reduced relevant reliably requires risk robust sciences selected serial setting spectral spectroscopic subject successfully supported surgery therapeutic throughout tissue tissues true tumor tumors validates valuable volume volumes whole yellow