Meeting Banner
Abstract #3173

Outlier Rejection for Adaptive Neonatal Segmentation

M. Jorge Cardoso1, Andrew Melbourne1, Giles S. Kendall2, Nicola J. Robertson2, Neil Marlow2, Sebastien Ourselin1

1CMIC, UCL, London, United Kingdom; 2Academic Neonatology, UCL, London, United Kingdom

Volume estimation through automated segmentation can help predict neurodevelopmental outcome in babies born prematurely. However, automated segmentation techniques are hampered by lack of contrast, white matter (WM) abnormalities and anatomical variability. We propose an Expectation Maximisation (EM) segmentation algorithm with a prior over intensities and tissue proportions, a B0 inhomogeneity correction, a spatial homogeneity term and a robust outlier rejection technique that ignores unexpected intensity clusters. This technique significantly improves both the accuracy and the robustness of the segmentation to the presence of WM abnormalities and pathological variability when compared to a state-of-the-art EM-segmentation.

Keywords

abnormalities accuracy adaptive adults amount analyzed anatomical anatomy artifacts assess assumes assuming atlas atlases attempt babies basis belongs bias birth blue brain cerebellum certain characteristic checks chosen class clinical clusters cohort combination combined component conjugate constraining containing contrast control corrected correction correlation cortical cross deep dependence depends described developments dice digital distance distribution done enables example excessive existence extraction field fluid frequency functions fundamental furthermore fusion gestation gestational green hyper hypo identify ignores improvement improvements includes incorporating influence injury intensities intensity introduced kingdom label lack lead likelihood linear manual manually markedly matrix maximization mitigate model modeled much multivariate nature neighbors neonatal normalized novel outliers pathological pons population presence prior priori priors probabilistic probability problem proposed providing quality random recent reducing regards rejection respectively reversal risk sample score segmentation skull smoothness space spatial staple stripped stripping strong structures studies subset substantial term third tissue tissues uniformity variability varying ventricles volumetric weeks white