Meeting Banner
Abstract #3035

A Practical Method to Compute Coefficients for Regularization Term in Nonrigid Registration of DCE-MRI

Xi Liang1, 2, Kotagiri Ramamohanarao1, Qing Yang3, Alexander pitman4, Marius Staring5

1University of Melbourne, Carlton, Victoria, Australia; 2National ICT Australia, Carlton, Victoria, Australia; 3Apollo Medical Image Technology Pty. Ltd.; 4St. Vincent's Hospital; 5Leiden University Medical Center

DCE-MRI is sensitive in the detection of tumors. However the motion in between the image acquisitions can complicate the analysis. Nonrigid registration is used to achieve alignment between images. It can be formulated as an optimization problem to minimize the image dissimilarity. However it not only reduces the occurred motion but also may change the volume of enhanced regions, e.g. cancer tissue. A spatial-variant rigidity regularization term can be used to preserve the rigidity of tissues. This study proposes a practical method to compute the coefficients of rigidity terms. The evaluation result shows it can replace the manual segmentation to compute the coefficients used to reduce undesirable deformations. We propose a framework to generate regularization coefficients for nonrigid registration in DCE-MRI, where tumor locations are to be transformed in a rigid fashion. The coefficients are obtained by applying a sigmoid function on subtraction images from a pre-registration. All parameters in the function are automatically determined using k-means clustering. In the evaluation test, the proposed method can replace the binary coefficients requiring manual tumor segmentation.

Keywords

achieve acquisitions addition agents alignment allows application applied apply applying assigned assumption automatic better binary breast cancer choice clinical coefficient coefficients complicate compute constrained constraint construct contrast control correlation curves deformation deformations deformed detection determine determined deviation dissimilarity employed enforcing enhanced enhancement equation error evaluation except explicit extensively final form formulated framework function generate grid highest hospital identifying improves initial intensity larger loss manual manually mapping mask measure measured medical metrics minimize motion motions moving national nonrigid normalized obvious occurred optimization pair partitioning penalty performance physics pitman post practical practically preserve preserving problem proposed proposes randomly reason recovery reduces register registered registration registrations regularization related replace resolution rigid rigidity rigidly robust scale scheme schemes segmentation segmented select sigmoid similarity simulated simulation smoothed space spatial spline square staring subtraction synthetic table target technology term terms tissue tissues transformation transformations transforms tumor tumors types update variant variations various volume volumes whole written yang