Meeting Banner
Abstract #2831

A Wavelet-Based Approach to Improve the Reproducibility of Resting-State FMRI Analysis

Shantanu Majumdar1, David C. Zhu1, 2

1Department of Radiology, Michigan State University, East Lansing, MI, United States; 2Department of Psychology, Michigan State University, East Lansing, MI, United States

Resting-state fMRI has shown great potential towards understanding the spontaneous brain activity at rest in healthy subjects as well as patients with neurological disorders. A viable clinical tool requires a high level of reproducibility. In this work, we investigated quantitative effects of a wavelet-based analysis of resting-state fMRI signal to improve the reproducibility in detecting functionally active brain regions.

Keywords

activation active activity although anatomical anterior applicability artifacts asked assumes axial band better blurring brain channel clinical closed coefficient coefficients coil computed conducted contiguous continuous correction correlation cortex courses deconvolution decreased default detecting detection deviation discarded disease disorders domain dynamics east excluding exist explore eyes families fast feasible filtering frequency frontal functionally gave global glover great green head healthy identified improve improvement indicated interleaved intrinsic introduced mask matrix medial medical mode motion network neurological neuron next optimize orthogonality overlap overlapped package participated patients pattern patterns percent planar posterior potential potentially preprocessed processed processing properties psychology quadratic qualitatively quantitative radiology ramp reasonable recent reduction registration removal remove repeated reported reproducibility resolution resting sampling scales scanner seed selected series slice smallest smith spatial spline spontaneous statistics steps studies subject subjects superior support synchronous system table target thresholding tool towards trans transform trends types understanding viable ville volume volumes wavelet wavelets white whole years