Meeting Banner
Abstract #2825

Unsupervised Parcellation of Precentral Gyrus Using Resting-State FMRI

Ali-Mohammad Golestani1, Mariana Lazar1

1Radiology, New York University Medical Center, New York, NY, United States

Anatomical landmarks are commonly used to identify regions of interest (ROIs) for brain imaging studies that might not reflect functional specialization. Previous studies showed that some of the anatomically defined ROIs can be subdivided into sub-regions based on their connectivity. Most of the parcellation approaches use clustering algorithms in which the number of clusters should be known in advance. We used a new clustering method that estimates the number and size of sub-regions, and parcellate precentral gyrus into posterior and inferior parts. This study highlights the importance of using a parcellation method that can automatically detect the number of clusters.

Keywords

ability able acquisition advance among analyses anatomical anatomically annealing anterior application approaches assigned atlas automatically averaging best block blue boxes brain cluster clustered clustering clusters commonly confounds connected connectivity consistency consistent correction correlation cortex cross defined definition detect developed diagonal discussed distinct divide divided dividing eighteen element employed encompass encompasses extracted extraction face fact field filtering find fitting frontal functional generate generated generates guess hand healthy hemisphere hemispheres highlights human identified identify identifying implemented importance included individual inhomogeneity inside introduced investigate known landmarks lastly least limits locally male many masks matrices matrix measured medical middle motion motor objective optimization optimum otherwise package part parts patterns planar post posterior previous processing proposed radiology reasonable recently reflects reordered responsible resting sales scanned series significantly similarity simulated slice smoothing software space spatial specialization square step studies subdivided subject subjects subsequently symmetrical tasks temporal timing transformed trio units unsupervised visual volumes whereas white whose wise