Meeting Banner
Abstract #2735

GPU-Accelerated SAR Computation with Arbitrary Averaging Shapes

Andre Kuehne1, Frank Seifert1, Bernd Ittermann1

1Physikalisch-Technische Bundesanstalt, Braunschweig & Berlin, Germany

Manual SAR averaging from simulated EM field data is necessary for validating the output of commercial solvers, overcoming limitations of standardized SAR algorithms and gaining flexibility and speed. We developed a GPU-accelerated SAR averaging algorithm based on FFT convolutions that is easy to implement without knowledge of GPU computing paradigms using free software for the GPU programming. It is able to utilize arbitrary averaging shapes, such as cubical or spherical volumes, and yields consistent results even at low resolution (5 mm) of the input data by employing a sub-voxel growing scheme for the averaging kernel.

Keywords

absorbed absorption accelerated achieve advanced aliasing allow alternative arbitrary array arrays artifact artifacts available averaging birdcage body calculating changing channel chosen clear code coded coil color comp consistently contained convolution core correctly cubical density dependence desired diameter done duke easily efficiently enforce even every expected fast faster fraction free graphics grow growing grows half implemented inherently inside intensity interfaces introduced iteration kernel kernels known lack like linearly local loop magma management mandatory mass maxim mesh model modern much need needs often optical outer outline owing packages padded patient peak phys power prevent problems process projections python quickly quired real renders required resolution resolutions resonator routines rung scenarios scheme shape shapes simulation slice software space speed spherical steps still structures superficial surface takes target technology tissue transmit uniform units usage usually various vectorized volume wave white wing