Meeting Banner
Abstract #2565

Automatic Segmentation of Breast Lesions in Dynamic Contrast-Enhanced MR Images

Jonathan Arvidsson1, Fredrik Johansson1, Andrew Mehnert1, 2, Darryl McClymont3, Dominic Kennedy4

1Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden; 2MedTech West, Gothenburg, Sweden; 3ITEE, The University of Queensland, Brisbane, Queensland, Australia; 4Queensland X-Ray, Greenslopes, Queensland, Australia

A novel method for automatically segmenting 3D lesions in dynamic contrast-enhanced breast MRI data is proposed. It is based on assigning a suspiciousness score to each voxel using features extracted from its time series, and then computing the spatial co-occurrence of this score in a 3D neighborhood about the voxel. In this way both the spatial and temporal variation in contrast enhancement are characterized. An empirical evaluation of the efficacy of this technique versus a competing method based on multispectral co-occurrence is also presented.

Keywords

achieves approaches assisted becoming benign boundary breast build called chest class classifier classifiers clinical combining competing complex computational computing confirmed construct contrast dataset datasets depicted develop diagnosis ding dynamic efficacy empirical enhancement equal evaluated examinations extracted extracting fall feature features field fitted form forward gists growing help herein homepage identified involved kale labeled last least lesion lesions linear logistic machine malignant manually matrix medical medicine model models near necessary needs neighborhood numb occurrence open operating parametric peak pooled post preferably probability processing produce proposed quantitative question radiologist random randomly rapid recent remains resolution review sampled scientific score segmentation segmented selected selection series several short simple slice slices slop slope smallest society spacing spatial speed squares status stratified suffices support surprising suspicious suspiciously suspiciousness system systems table task technology temporal terms tissue train trained training truncate turn types validation variables variation vector versus volumes wall window wise women years yield yields