Meeting Banner
Abstract #2562

Performance of an Automated Segmentation Algorithm for MR Renography

Artem Mikheev1, Jeff L. Zhang2, Tariq Gill1, Marta Heilbrun2, Stella Kang1, Hersh Chandarana1, Henry Rusinek1, Vivian S. Lee2

1Radiology, NYU School of Medicine, New York, NY, United States; 2Radiology, University of Utah School of Medicine, Salt Lake City, UT, United States

A key prerequisite for analysis of MR renography (MRR) data is the ability to segment MRI images. We have developed and validated a new semi-automated renal segmentation technique based on edge-constrained region growing. The segmentation error is 7.6 6.5 cm3 and the interobserver disparity 5.4 4.5 cm3, a significant improvement over graph-cut method. The new algorithm achieves a ten-fold improvement in user processing time, from >20 min to 2.1 0.7 min per kidney. With expedited image processing, MRR has the potential to expand our knowledge of renal function and to help diagnose different types of renal insufficiency.

Keywords

abdomen abdominal ability acceptable accuracy achieved acquisitions adjusting agents artifacts assessed atrophic atrophy automated city clinical collaborated collecting column comparable compartments compound connectivity constrained contrast coronal corrects cuts cystic cysts dataset decade depiction detail detection detects developed diagnose disparity dynamic edge enhanced error expand expedited experienced exterior external filtered filtration flow fold freely gadolinium generate gill grant graph green growing henry human improve improvement independent individual individuals insufficiency interactive interior internal intra kidney kidneys lake liver manual manually masks measured measures measuring medicine middle modeling motion neighbor note observers paintbrush partial past patients pelvis performance physiology placing plasma posterior potential precision prerequisite presence processing prominent propagates proposed providing radiology reached remarkable renal represent resorption respiratory restricted rows salt scheme school secretion seed segment segmentation segmenting selected semi separate several spleen sponsors strength strong subject suffer suitable surfaces system task tissue tool tools transit trend tubular types useful user utility vascular volumes