Meeting Banner
Abstract #2475

Selfcalibrated DCE MRI Using Multi Scale Adaptive Normalized Averaging (MANA)

Thord Andersson1, 2, Thobias Romu, 12, Bengt Norn2, 3, Mikael Fredrik Forsgren, 24, rjan Smedby2, 3, Stergios Kechagias5, 6, Sven Almer6, 7, Peter Lundberg, 24, Magnus Borga1, 2, Olof Dahlqvist Leinhard, 24

1Dept of Biomedical Engineering (IMT), Linkping University, Linkping, Sweden; 2Center for Medical Image Science and Visualization (CMIV), Linkping University, Linkping, Sweden; 3Dept of Medical and Health Sciences (IMH), Div of Radiological Sciences, Linkping University, Linkping, Sweden; 4Dept of Radiation Physics, Linkping University and Radiation Physics, UHL County Council of Ostergotland, Linkping, Sweden; 5Dept of Medical and Health Sciences (IMH), Div of Cardiovascular Medicine, Linkping University, Linkping, Sweden; 6Dept of Endocrinology and Gastroenterology, UHL County Council of Ostergotland, Linkping, Sweden; 7Dept of Clinical and Experimental Medicine (IKE), Div of Gastroenterology and Hepatology, Linkping University, Linkping, Sweden

In conventional analysis of DCE MRI time series, constant sensitivity of the MR-scanner during the experiment usually is assumed. However, patient movement and other effects may affect the sensitivity during the time series. The Multi Scale Adaptive Normalized Averaging (MANA) method has been proposed to correct intensity inhomogeneity in fat-water MRI using Dixon imaging, and to provide reference scaling in DCE MRI time series. In this work, we validate statistically the correctness of MANA compared to conventional scaling. The results show that MANA provides more consistent intensities and successfully can recreate scaling information directly from the data.

Keywords

acquisition adaptive addition affect agent always annals array assuming assumption averaging best bias biomedical breath bulletin care classified coil communications considering consistent constant contrast correcting correction correlation council county covariance dataset decreased default denoted density dept deviations directly distributions dynamic economics endocrinology enhanced equal equality evaluating every exists experienced experiment experimental field future giving hardware health homogeneity hypothesis implies important index indicating inhomogeneity initial injected instead intensities intensity international link liver local localized macro mathematical median medical medicine middle multiplication multivariate native need normality normalized note omnibus oxford paired paper particularly patient patients peter physics ping pitman placed position positive potentially preliminary proposed pure radiation radiological radiologist recreate reduce reject related relatively remaining respectively sample scalar scale scales scaling scanner science sciences sensitive sensitivity series shapes significance significantly since smooth sparse spread statistically statistics student successfully surrounding theory uncommon unevenly univariate uptake usually validate variance variances vectors version volume want water