Meeting Banner
Abstract #2473

Estimating Phase Maps from Partial K-Space Data

Tom Depew1, Qing-San Xiang1, 2

1Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada; 2Radiology, University of British Columbia, Vancouver, BC, Canada

Phase can be used to encode information about numerous MRI properties such as magnetic field strength, motion or flow, and temperature. Phase maps are typically obtained by comparing two complex images in which the relative phase is sensitized to the physical quantity of interest. In situations where the phase can be assumed to change smoothly, the two images can be reconstructed from central k-space data to reduce scan time. Here we investigate the effect of truncation artifact associated with this approach and the feasibility of obtaining phase maps by fitting a convolution kernel to various partial k-space coverage patterns.

Keywords

accurate achievable achieved acquisitions actually additional adequate adversely affect agreement alternative applications applied artifact artifacts available better central chemical chosen comparable complete complex computation computed conjugate contrast convolution corresponds coverage creating datasets dealing described determined differ direct directly displayed displaying displays domain draws effectiveness elasticity employed encoded estimating estimation even field fitted fitting flow form fraction full generally generated gold highly hill identical important imposing input investigate kernel known least limited local magnitude many maps minimal modulation moreover motion multiplication near needs noise numerous offers offset optimal oracle parabolic partial particular particularly patterns perfect physical pixel portion prevalent principle proceedings process product properties prove quantity radiology random reduction refocusing related relating representing represents required requires requiring respectively robust robustness sample sampled samples sensitive sensitivities sensitivity simulated smooth smoother smoothly space step subsequent suffer superior target temperature theorem tissue trans transform truncated truncation typically unity various varying versus view