Meeting Banner
Abstract #2367

7T Susceptibility Sensitive Imaging Detects Microarchitectural White Matter Differences Across the Healthy Corpus Callosum

Sharon K. Schreiber1, Bradley D. Clymer2, Michael V. Knopp3, Petra Schmalbrock3

1Biomedical Engineering, The Ohio State University, Columbus, OH, United States; 2Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States; 3Radiology, The Ohio State University, Columbus, OH, United States

This work supports the contention that susceptibility dominates phase contrast in dense white matter fiber bundles, such as the corpus callosum. It suggests that this contrast at high fields may be used to distinguish subtle differences in white matter microarchitecture.

Keywords

account acquisition actual addition advantage alone anterior approximated architecture architectures assumption axial axon better biomedical body brain bundle caliber cellular channel chemical cholesterol coaxial coil collected combined compartment component comprising compute computed computer concepts consent constructed contrast corpus cylinder dataset derived described desirable detailed detects diagram distinguish distributions dominant electrical electronic engineering equipment error exchange expect experimental experimentally exponentials fair fiber fibers field five focused furthermore greater healthy heterogeneity histology human idea inclusion independent informed inter known least listed literature magnitude males many measured measuring mechanism mechanisms medical might model models neural obscuring obvious orientation outlined perpendicular population post posterior predict predictive predominantly processed proteins published radiology reasonably receive reconstruction regional repeat repeated scale sense sensitive separating sets seven significance signing simple simulated simulation simulations slice source statistical statistics stringent studies subject subjects suggest suggested suggestive suggests supports susceptibility table taken taking tracts true underlying uniform useful variability variance variances white