Meeting Banner
Abstract #2284

The Fastest Arbitrary K-Space Trajectories

Sana Vaziri1, Michael Lustig1

1Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA, United States

We present a method to compute the fastest possible gradient waveforms for a given k-space trajectory. In our design, we exploit the fact that each gradient set has its own constraints. The resulting trajectory is therefore not rotationally invariant and a redesign is needed when rotated. However, our algorithm is fast and non-iterative and can compute waveforms on-the-fly. Results of 5-10% waveform time reduction are presented for spiral and circular trajectories.

Keywords

achieve acquisitions advantage approximate approximated arbitrary artifacts backwards banding circular compute computer considered considers constraint constraints converts cubic curve decrease depends derivative described design desired details determines determining differential done duration edition electrical elementary engineering equation equations equivalent examples expense exploit exploits extension fact fast fastest feasible finite forward function gradient hardware implemented improvement integration interpolation interpolations invariant iterative king language length limitation magnitude modify necessary needed operations optimal ordinary orientation parameterization path physical played previous produces programming readout rectified redesign reduction requiring respectively rotated rotation rotationally rule sciences separate separately slew smooth solution solutions solved space spiral spline still substantial system takes taking trajectories trajectory trapezoid traversal utilizing velocity waveforms worst