Meeting Banner
Abstract #2275

Interpolated Compressed Sensing MR Image Reconstruction Using Neighboring Slice K-Space Data

Yong Pang1, Xiaoliang Zhang1, 2

1Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; 2UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, United States

Sparse MRI has been introduced to reduce the acquisition time and raw data size by significantly undersampling the k-space. We propose an interpolation method to improve the signal to noise ratio or imaging speed for multi-slice two-dimensional MRI. The raw data of each slice is multiplied by a weighting function and then used to estimate the missed k-space data of the neighboring slice, which helps improve the SNR of the neighboring slice. In-vivo MR of human feet has been used to investigate the feasibility of the proposed method, showing obvious improved SNR of the neighboring slice.

Keywords

acquiring acquisition adjacent another award bioengineering biomedical body choose compressed conjugated density diagram dimensional dramatically even excitation experiment feasibility feet field firstly foot full function gradient graduate grants greatly healthy helps human improve improved in vivo incoherent interpolate interpolated interpolation introduced investigate joint keep linear matrix missed mote multiplied neighboring noise obviously original pang partially potential project propose proposed radiology reconstructed reconstruction recovered reduce resolution rows samples sampling scanner scheme sensing significantly similarity slice slices space sparse speed strategy supported theory third unchanged variable view whole