Meeting Banner
Abstract #2273

Generalized ABSINTHE with Sparsity-Enforcing Regularization

Eric Y. Pierre1, Nicole Seiberlich1, Stephen Yutzy2, Vikas Gulani3, Mark A. Griswold, 13

1Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; 2Dept. of Radiology, University of Pittsburgh, PA, United States; 3Dept. of Radiology, University Hospitals of Cleveland, OH, United States

A general ABSINTHE framework that makes use of prior information to help reduce the amount of data needed to generate an image of a given object is presented. It can be used with any undersampled data reconstruction technique and with any form of prior information compatible with the acquisition scheme. Results are presented for an implementation using SENSE and a database of previously acquired images with identical coil configuration, identical resolution, similar anatomical positioning, and similar image contrast as the signal to reconstruct. A regularization criteria for reconstruction based on a priori knowledge was introduced which enforces sparsity.

Keywords

absinthe accelerated accentuate adaptive added additionally aliasing allows analytical applicable applied approximated approximation artifacts attributed biomedical bottom brain brains central channel chosen close coil column combined computation compute computed consistency consistently database dept described deviation dictionary diffuse displayed distributed drives encoding enforces enforcing engineering entries equation error expected fact fast features fewer framework free fully fuzzy generalized ground head hospitals identify implementation improve improvements in vivo inset intensity introduced iteration iterations iteratively known made maps mark mask matching medical minimize minimizes multiplied noise noisy norm normalized numerical oasis object open operator parallel part pixel pixels previous prior priori profiles proposed providing radiology reconstruct reconstructed reconstruction reconstructions reduced reduction regularization remove reserve retrospective sampled scaled selected sense sensitivities sensitivity series serve serves significantly simulate simulated simulation slice slices smaller solution solutions space sparse sparsity spin square step studies summed superscript target term theory threshold training transform transpose truth unfold unrecognized volumes yield yields zero