Meeting Banner
Abstract #2262

A Block Reordering Technique in a Compressed Sensing Framework

Srikant Kamesh Iyer1, 2, Tolga Tasdizen3, 4, Ganesh Adluru5, Edward DiBella6, 7

1Electrical and Computer Engineering , University of Utah , salt lake city, UT, United States; 2Scientific Computing and Imaging Institute (SCI), University Of Utah, salt lake city, UT, United States; 3Electrical and Computer Engineering, University of Utah, salt lake city, UT, United States; 4Scientific Computing and Imaging Institute (SCI), University Of Utah , salt lake city, UT, United States; 5UCAIR, Department of Radiology, University of Utah, salt lake city, UT, United States; 6UCAIR, Department of Radiology,, University of Utah, salt lake city, UT, United States; 7Department of Bioengineering, , University of Utah, salt lake city, UT, United States

Incorporating priors about the order of signal intensities of pixels to modify the TV constraint has been shown to improve the quality of the images reconstructed from under sampled data. We propose to apply the pixel ordering information by dividing the data into smaller blocks to make the method more robust to motion. Comparisons with TCR and TCR with single block reordering show that that smaller block size help improve the robustness of the reconstruction to motion in the data and the reconstructions match the fully sampled data more faithfully.

Keywords

acts additional advances affect allowed applied applying array arrows artifacts axis better bioengineering block blocks body cardiac cause city coil coils collected combined compressed computer computing consisting constraint contrast cost dataset degree desirable determine dynamic electrical employed engineering enhanced errors especially extend extracted faithfully features field flash frames framework fully function help helps hence improve improved improvement improves incorrect independent independently inferred institute intensities kinetics lake larger last limitation localize location made make match matched medical minimizing modify motion noise often part perfect physical pixel pixels popular powerful presence prior process propose quality radial radiology recent reconstructed reconstructing reconstruction reconstructions recovery relation relax remove reordered reordering represents required resolution respectively robust robustness root salt sampled samples saturation scanner schemes scientific sensing series simulated slice smaller smoothing sorting space spatial split square squared squares streaking temporal though track transactions trio turbo variation variations ventricle visualized