Meeting Banner
Abstract #2256

k-T CS-NLG: Dynamic Imaging Reconstruction with Compressed Sensing and Nonlinear GRAPPA

Yihang Zhou1, Yuchou Chang1, Leslie Ying1

1College of Engineering and Applied Science, University of Wisconsin-Milwaukee, MILWAUKEE, WI, United States

We propose a new dynamic MRI reconstruction method that effectively combines the compressed sensing based dynamic imaging technique with parallel MRI technique. The method decouples the reconstruction process into two sequential steps. In the first step, a series of aliased dynamic images is reconstructed using a CS method from the highly undersampled k-space data. In the second step, the missing k-space data for the original image are reconstructed by the nonlinear GRAPPA technique. Experimental results using in vivo data demonstrate that the proposed method is able to preserve both spatial resolution and spatial variations at high accelerations.

Keywords

able abstract accelerate accelerations acquisition aliased among applied artifacts auto bandwidth better bottom calibration capture cardiac certain cine coil coils college combination combine combined combines complementary compressed conjugate consistence correspond dataset decouples degree denotes details developed difficult dimensional distinct domain dynamic effectively encoding engineering equation error evaluated exploit exploits extra fast feasibility fewer finding flowchart formulated frame frequency full generate gradient great highly illustrated in vivo incorporating indicating location maximize middle missing model name noise nonlinear novel operation optimization original parallel performance pixel polynomial preserve print problem procedure process profile profiles promising propagation propose proposed random readout received reconstruct reconstructed reconstruction reconstructions reconstructs reduce reduction relationship represent resolution scheme science sense sensing sensitivities sensitivity sequential series sets several significantly simple simply slice solve space sparseness spatial spatially specifically speed static step steps subset superiority suppress taking temporal term theory transform true uniformly validated variation variations white