Meeting Banner
Abstract #2245

Kalman Filter Techniques for Accelerated Cartesian Dynamic Cardiac Imaging

Xue Feng1, Michael Salerno2, Christopher M. Kramer2, 3, Craig H. Meyer1, 3

1Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; 2Medicine, University of Virginia, Charlottesville, VA, United States; 3Radiology, University of Virginia, Charlottesville, VA, United States

In dynamic MRI, spatial and temporal parallelism are exploited to reduce scan time. A real-time reconstruction is sometimes necessary for timely feedback during the scan. In this study a Kalman filter model suitable for real-time reconstruction is used to increase the temporal resolution. The original application of the Kalman filter to dynamic MRI was limited to non-Cartesian trajectories; here we overcome this limitation and apply the model to the more commonly used Cartesian trajectory. Furthermore, we combine the Kalman model with spatial parallel imaging techniques to further increase the spatial and temporal resolution and SNR.

Keywords

abstract accelerated accurately acquisition advanced aliasing alone although appearance application apply array assumption available axis becomes behaves better biomedical blind body calculation cardiac channel coil coils combination combine combined commonly comparing compressed computation compute conditions conspicuous constant consuming covariance developed dimension direct directly dynamic easily effective either encoding engineering equipped error estimation estimations experienced extended feasible feedback filter final focused former frames fully furthermore gain gated gives goal happens implementation include initial interpolation latter limitation limited linear linearity made makes many matrices matrix model much multiplication neighboring newly original parallel parallelism pattern pixel probably problem process properties radiology rating readout real receiver reconstructed reconstruction reduce reduced regarded reliable replaced replacing required resolution retrospective review sampled sense sensing sensitivity series sets sharing short significantly simplification simplify simulation simulations since slam sliding slightly solutions sometimes space spatial speed statistical step substantially suffer suitable temporal theory timely training trajectories triangle vector vectors view window