Meeting Banner
Abstract #2243

High Spatial and Angular Resolution Diffusion Imaging Using Compressed Sensing

Merry Mani1, 2, Mathews Jacob3, Arnaud Guidon4, Chunlei Liu, Allen Song, Jianhui Zhong, 2

1Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States; 2Rochester Center for Brain Imaging, Rochester, NY, United States; 3Electrical and Computer Engineering, University of Iowa; 4Biomedical Engineering, Duke University

Both high angular and high spatial resolution are highly desirable in diffusion imaging applications. However, the acquisition time gets prohibitively long as the resolution in both dimensions are increased. We propose a new acquisition strategy to simultaneously enhance the resolution in both dimensions of diffusion imaging in a reasonable scan time. We achieve this by under-sampling the combined k-q acquisition space of diffusion imaging and using a compressed sensing strategy for reconstruction. Results show that at least 6 fold acceleration in scan time is possible, making it feasible to achieve 1mm in-plane resolution and high angular resolution in around 8 minutes.

Keywords

acceleration accurately achieve achieved achieving acquisition addition adult aging allowing angular anisotropic approval basis brain clinical coil collected comb combined combining comp compressed computed computer constant criteria crossing decoupled defined density derivation desirable differ diffusion dimension dimensions distributed domain duke durations either electrical enables encoding engineering enhance error even expense fiber fibers field fold fraction full function gives head healthy highly impractical in vivo instead interleaved interleaves joint least limits linear long made matrix merry mixture model much norm normalized obvious orientation oriented parallel peaks penalized plot preserved previous proposed proposing random reason reasons reconstructed represent resolution review rotates sample sampled sampling savings scanner scanning schematic scheme schemes selected self sensing several shots skipped skipping slices snails solution solve solved song space sparse spatial spiral spite squares system tensor tracking trans transform translates uniform uniformly unknown utility variable variation various vector volume whereas wing